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Abstract

Background: An organism’s protein interactome, or complete network of protein-protein interactions, defines the
protein complexes that drive cellular processes. Techniques for studying protein complexes have traditionally
applied targeted strategies such as yeast two-hybrid or affinity purification-mass spectrometry to assess protein
interactions. However, given the vast number of protein complexes, more scalable methods are necessary to
accelerate interaction discovery and to construct whole interactomes. We recently developed a complementary
technique based on the use of protein correlation profiling (PCP) and stable isotope labeling in amino acids in cell
culture (SILAC) to assess chromatographic co-elution as evidence of interacting proteins. Importantly, PCP-SILAC is
also capable of measuring protein interactions simultaneously under multiple biological conditions, allowing the
detection of treatment-specific changes to an interactome. Given the uniqueness and high dimensionality of co-
elution data, new tools are needed to compare protein elution profiles, control false discovery rates, and construct
an accurate interactome.

Results: Here we describe a freely available bioinformatics pipeline, PrInCE, for the analysis of co-elution data.
PrInCE is a modular, open-source library that is computationally inexpensive, able to use label and label-free data,
and capable of detecting tens of thousands of protein-protein interactions. Using a machine learning approach,
PrInCE offers greatly reduced run time, more predicted interactions at the same stringency, prediction of protein
complexes, and greater ease of use over previous bioinformatics tools for co-elution data. PrInCE is implemented in
Matlab (version R2017a). Source code and standalone executable programs for Windows and Mac OSX are available
at https://github.com/fosterlab/PrInCE, where usage instructions can be found. An example dataset and output are
also provided for testing purposes.

Conclusions: PrInCE is the first fast and easy-to-use data analysis pipeline that predicts interactomes and protein
complexes from co-elution data. PrInCE allows researchers without bioinformatics expertise to analyze high-
throughput co-elution datasets.
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Background
The association of proteins into complexes is common
across all domains of life [1, 2]. Indeed, most proteins in
well-studied proteomes are involved in at least one protein
complex [3, 4]. Therefore, understanding the roles, mech-
anisms, and interplay of protein complexes is central to
understanding life.
A proteome of 1500 proteins has over one million pos-

sible binary protein-protein interactions (PPIs) and many
more potential higher-order complexes. Because of this
combinatorial explosion, even relatively simple proteomes
can yield rich, complex interactomes. High-throughput or
high-content methods that identify many PPIs simultan-
eously are therefore valuable to efficiently map these
networks. There are currently three general methods for
doing this: The first, yeast-2 hybrid (Y2H), operates by in-
corporating modified bait and prey proteins in a genetically
modified yeast cell, such that a PPI between bait and prey
drives transcription of a reporter gene. Affinity purification
mass spectrometry (AP-MS), a second technique, involves
immunoprecipitation of proteins of interest (baits) [5].
While powerful, both techniques face limitations. For one,
tagging proteins, typically with Gal4 in the case of Y2H or
an epitope-antibody combination for AP-MS, creates non-
endogenous conditions that can disrupt protein binding
sites and increase the number of false negatives.
The third general approach, collectively termed co-

fractionation approaches, involves resolving complexes by
either chromatography or electrophoresis and assigning
interacting partners based on the similarity of fractionation
profiles [6–8]. While there are similarities in how the data
from these methods are treated, there are also unique
considerations for each one. Being more established
methods, Y2H and AP-MS have several excellent
approaches for data analysis [5, 9, 10]. However, there does
not yet exist a gold standard tool for analyzing co-fractiona-
tion data. We [11] and others have previously reported
pipelines for analyzing co-fractionation data, although exist-
ing approaches use other external sources of data, e.g. co-
evolution, in addition to co-fractionation data [6, 12]. Opti-
mally though, an interactome should be derived from co-
fractionation data alone, using other data only for bench-
marking. To this end, here we describe an open-source
pipeline for analyzing co-fractionation data: PrInCE (Pre-
diction of Interactomes from Co-Elution). PrInCE
represents a major conceptual advance over preliminary
bioinformatics treatments published by our lab, which
provided basic data extraction and curve fitting tools for
co-elution data [8, 11]. Improvements include ranked inter-
actions, improved user interface, and extensive documenta-
tion. Importantly, PrInCE uses machine learning methods
which greatly improve its performance. We benchmarked
the performance of PrInCE versus a previous version [11]
and demonstrate a 1.5-to-2-fold improvement in the

number of predicted PPIs at a given false disovery rate with
a 97% decrease in computational cost. This pipeline is freely
available for download [13].

Methods
Pipeline overview
The workflow of the pipeline is divided into five
modules: 1) identification of Gaussian-like peaks in the
co-fractionation profiles (GaussBuild.m); 2) correction
for slight differences in the separation dimension
between replicates (Alignment.m); 3) comparison of
differences in protein amounts, i.e. fold changes,
between conditions (FoldChange.m); 4) prediction of
PPIs within each condition (Interactions.m); and 5) con-
struction of protein complexes from the predicted PPIs
(Complexes.m). The first two modules, i.e. GaussBuild.m
and Alignment.m, are pre-processing steps, while the
remaining three modules compute protein abundance
changes and predict protein interactions and complexes
(Fig. 1).

Requirements
Software and hardware
PrInCE is available as a standalone program for
Windows or Mac OSX, as well as a Matlab package.
Matlab is not required to run standalone versions of
PrInCE but it was selected initially due to superior
curve fitting tools compared to other environments.
After downloading and saving to a dedicated folder
containing co-elution data, standalone PrInCE is dir-
ectly accessed through its own icon. PrInCE can be
downloaded for free [13]. Detailed documentation of
all the code as well as further instructions for run-
ning the software are provided.

Datasets
This pipeline requires co-fractionation profiles of single
proteins, where co-elution is evidence of co-complex
membership. Each co-fractionation profile, e.g. a
chromatogram, is a row in a .csv file. Co-fractionation
profiles are grouped by both experimental condition and
replicate number. Separate .csv files are used for
different experimental conditions, and the replicate
number of each chromatogram is recorded by a column
in each file. We provide a test dataset on Github as an
example of correct formatting.

Reference database of known complexes
This pipeline requires a reference database of known
protein complexes. A portion of the proteins in these
reference complexes must also be quantified in the
experimental data, as the reference complexes provide
the template by which novel interactions are predicted.
We found that manually curated databases that rely on
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experimental evidence, such as CORUM [14], lead to a
high number of predicted interactions.

Pipeline workflow
Data pre-processing (GaussBuild.M, Alignment.M)
Module GaussBuild.m uses Gaussian model fitting to
identify the location, width, and height of peaks in the
co-fractionation data. Any co-fractionation profile with
data in at least five fractions is chosen for model fitting.
First, single missing values in co-fractionation profiles
are imputed as the mean of neighbouring data points.
Remaining missing values are imputed as zeros, and co-
fractionation profiles are smoothed by a sliding average
with a width of 5 data points. Five Gaussian mixture
models are fit to each profile. These models are mixtures
of 1, 2, 3, 4 or 5 Guassians, respectively. Fitted parame-
ters A, μ, and σ are the Gaussian height, center, and
width, respectively. In order to reduce the sensitivity to
outliers, robust fitting is performed using the L1 norm.
For each profile, model selection is performed by select-
ing minimum AIC values.
Slight differences between the elution time of repli-

cates are corrected by module Alignment.m, using the

assumption that proteins with a single, well-defined
chromatogram peak should elute in the same fraction in
every replicate [11].

Fold changes between conditions (FoldChanges.M)
Within a single replicate, the protein abundance ratio,
i.e. fold change, is calculated between conditions for
each protein (FoldChanges.m). If there are multiple
replicates, this module also calculates significance
using a paired t-test. Fold changes are calculated
using data centered on the Gaussian peaks identified
by GaussBuild.m [11].

Predicting interactions (Interactions.M)

Quantifying co-fractionation with distance measures
PPI prediction begins by calculating the effective dis-
tance between the co-fractionation profiles of every
pair of proteins. We use five distance measures to
quantify different aspects of co-fractionation profile
similarity. For all distance measures, a value close to
zero signals high similarity between co-fractionation

a

c

b

Fig. 1 Pipeline overview. a. Co-fractionation profiles from known interactors, ribosomal proteins P61247 (black) and P62899 (grey). b.
Co-fractionation profiles from non- interacting protein pair, Q6IN85 (black) and E9PGT1 (grey). c. Pipeline workflow. Raw data consists of
co-fractionation profiles grouped by replicate and condition. In pre-processing, Gaussian mixture models are fit to each co-fractionation profile to
obtain peak height, width, and center. If there are multiple replicates, the Alignment module adjusts profiles such that Gaussian peaks for the
same protein occur in the same fraction across replicates. Changes in protein amounts between conditions, i.e. fold changes, are computed in
the FoldChange module. Inter- actions between pairs of proteins are predicted by first calculating distance measures between each pair of
proteins and feeding these into a Naive Bayes supervised learning classifier. Known (non-)interactions from a reference database, e.g. CORUM, are
used for training. Finally, the list of predicted pairwise interactions is processed by an optimized ClusterONE algorithm [16] to predict
protein complexes
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profiles. These five metrics are not exhaustive, but in
practice we found there was little value in additional
measures. For a pair of co-fractionation profiles ci, cj,
these distance measures are

� One minus correlation coefficient, 1 − Rcorr: One
minus the Pearson correlation coefficient between ci
and cj .

� Correlation p-value, pcorr: Corresponding p-value to
1 − Rcorr.

� Euclidean distance between co-fractionation profiles
ci and cj, E.

� Peak location, P: Calculated as the difference, in
fractions, between the locations of the maximum
values of ci and cj .

� Co-apex score, CA: Euclidean distance between the
closest (μ, σ) pairs, where μ and σ are Gaussian
parameters fitted to ci and cj. For example, if ci is fit
by two Gaussians with (μ, σ) equal to (5, 1) and (45,
3), and cj is fit by one Gaussian with parameters (45, 2),

CA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

45−45ð Þ2 þ 3−2ð Þ2
q

¼ 1. Thus
chromatograms with at least one pair of similar
Gaussian peaks will have a low (similar) Co-apex score.

Predicting interactions via similarity to reference
Combined with a reference database such as CORUM,
these five distance measures can be used to predict novel
PPIs. Our pipeline uses a machine learning classifier to
do this [6, 15]. Specifically, we train a Naïve Bayes classi-
fier, which evaluates how closely the distance measures
for a candidate protein-protein pair resemble the
distance measures observed for reference interactions.
Distance measures are normalized such that their means
are 0 and standard deviations 1. To reject uninformative
distance measures, feature selection is performed prior
to classification using a Fisher ratio > 2. The contribu-
tion of each feature to prediction performance depends
on the dataset, although in general the most-informative
(least-rejected) features are 1-Rcorr, P, and CA. Distance
measures are combined across replicates (but not condi-
tions) for each protein-protein pair. Class labels are
assigned based on the reference database. Reference
protein pairs that occur in the same complex are gold
standard interactions (interacting or “intra-complex”
label). Proteins that are found in the reference database
individually but do not occur within the same complex
are labeled non-interacting (“inter-complex”) and are
false positive interactions [6]. Novel interactions are
those where one or both members are not in the refer-
ence database.
The Naïve Bayes classifier returns the probability that

putative protein pairs are interacting. Interaction prob-
abilities are calculated separately for each experimental

condition. We use a k-fold cross-validation scheme to
avoid over-fitting. k = 15 is used as a tradeoff between
computation time and classification accuracy. The classi-
fier calculates an interaction probability for every protein
pair. Self-interactions are not considered.
By applying a threshold to interaction probability

returned by the classifier, protein pairs are separated into
predicted interactions and predicted non-interactions.
The probability threshold is chosen so that the resulting
interaction list has a desired ratio of true positives
(intra-complex) and false positives (inter-complex),
quantified as precision TP/(TP + FP), where TP and FP
are the number of true positives and false positives. The
desired precision is chosen by the user.
Finally, we express the confidence of each predicted

interaction by reformulating interaction probability as an
interaction score. A predicted interaction’s score is equal
to the precision of all predicted interactions with an
interaction probability greater than or equal to it.
Although interaction probability and score are largely
equivalent, interaction score has two advantages. First,
interaction score is more human readable, since the
dynamic range of predicted interaction probabilities is
often quite small. Second, the use of interaction score
makes it trivial to generate interaction lists with a
desired precision.

Predicting complexes (Complexes.M)
Complexes are predicted from the list of pairwise in-
teractions using the ClusterONE algorithm [16]. The
primary benefit of ClusterONE over other algorithms
is that ClusterONE can predict the same protein in
multiple complexes. Two parameters, p and dens are
optimized via grid search to produce the most
reference-like complexes. p represents the number of
unknown pairwise interactions, and dens is a thresh-
old for the minimum density of a complex, where
complex density is defined as the sum of weighted
internal edges divided by N(N − 1)/2. Parameters are
optimized to maximize either the matching ratio [16]
or geometric accuracy [17] between predicted and
reference complexes. Since there are possibly multiple
interaction lists – a list of all predicted interactions
as well as lists specific to each experimental condition
– complexes can be built for each experimental con-
dition separately, as well as an overall complex set
from the aggregate interactome.

Test datasets
For this study, we tested PrInCE on four co-fractionation
datasets, each composed of thousands of co-fractionation
profiles (Table 1). D1, D2, and D4 were collected for re-
cently published PCP-SILAC experiments (D1 [18], D2
[11], D4 [8]). D3 is the raw intensity values of the medium
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channel of D1, which we included as a surrogate for non-
SILAC data, and label-free data more generally.

Gold standard references
We tested how the choice of gold standard reference
affects the interactions predicted by PrInCE. First, we
predicted interactions using subsets of CORUM drawn
under two different schemes. The first scheme was
designed to test the effects of the size of the reference
set: a fraction of CORUM complexes were drawn
randomly (10%, 20%, …, 100% of complexes) and inter-
actions were predicted from dataset D1. The second
scheme was designed to test whether interactions could
be predicted consistently for different reference sets. To
control the number of PPIs we performed a paired ana-
lysis, where we divided CORUM into two halves with
equal numbers of gold standard PPIs in the data. These
halves have no PPIs in common, and interactions were
predicted from both halves using a single replicate of
dataset D1. The first scheme was repeated 10 times, and
the second Scheme 50 times. Second, we predicted inter-
actions from all four datasets using two additional gold
standard references: IntAct [19] and hu.MAP [20].

Validation of PrInCE output
Using these four datasets, we performed computational
validations of PrInCE output. First, we tested whether
our metric for ranking predicted interactions (inter-
action score) is consistent with other known evidence
for protein interaction. To do so, we calculated the
Spearman correlation coefficient between interaction
score and these four other, independent measures of
protein interaction: (i) whether protein pairs shared at
least one Gene Ontology term within GO slim, a
condensed version of the full GO ontology [21, 22]; (ii)
the Pearson correlation coefficient of protein abundance
across 30 human tissues, as taken from the Human
Proteome Map (http://www.humanproteomemap.org/,
[23]); (iii) whether protein pairs shared at least one
subcellular localization annotation within the Human
Protein Atlas Database [24]; and (iv) whether protein
pairs shared a structurally resolved domain-domain
interface, as identified by the database of three-
dimensional interacting domains (3did) [25]. This

validation was performed on predicted interaction lists
with an interaction score of 0.50 or greater.
Second, we investigated whether predicted interactions

were enriched over non-interactions for the same four
measures (shared GO terms, tissue-dependent proteome
abundance correlation, shared subcellular localization
terms, and shared structurally resolved interfaces). For
these interacting versus non-interacting enrichment
analyses, we imposed a 10% breadth cutoff on all anno-
tation terms, such that only annotation terms common
to less than 10% of all proteins in the sample were used.
As in [26], we also used the Jaccard index between pro-
tein pairs to quantify the extent of shared annotation
terms across the entire Gene Ontology. This validation
was performed on more stringent interaction lists (inter-
action score 0.75 or greater).
Third, we re-estimated the precision of our predicted

interaction lists using an independent, previously
described method [27]. Our definition of false positives
as “inter-complex interactions” likely overestimates the
number of false positives. To quantify the magnitude of
this overestimation, we added random interactions
between non-interacting proteins within the reference
set to bring the average expression correlation coeffi-
cient of all interacting proteins within the reference
dataset to the same level as in the predicted interactome
under investigation. To avoid training and testing on the
same reference interactions, we randomly withheld 1/3
of CORUM complexes as a validation set, and used the
remaining 2/3 as a training set to train the Naive Bayes
classifier and predict interactions. The average Pearson
correlation coefficient in tissue proteome abundance was
calculated for the resulting predicted interactions, and it
was compared to interactions from the 1/3 of CORUM
withheld for testing. We bootstrapped this procedure
100 times to re-estimate the precision of the protein
interaction network.
Finally, following the network analysis of [26], we

explored the topological properties of the predicted sub-
graphs by sequentially removing interactions under one
of three schemes: (i) highest interaction score first, (ii)
lowest interaction score first, or (iii) randomly. This ana-
lysis tests whether the interaction network consists of
cores of tightly connected proteins linked by weaker or

Table 1 Test dataset summary

Dataset Conditions Replicates Fractions ProteinIDs Interactions
(0.50)

Interactions (0.75)

D1a 2 3 55 3216 19,740 3416

D2b 2 4 45–50 3438 7240 1447

D3 1 3 55 3198 5691 1160

D4c 2 3 50 3844 16,430 2072
a[18], b[11], c[8]
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more spurious connections. If this is the case, removing
weakest interactions first will fragment the network, in-
creasing the number of unconnected subgraphs and low-
ering their average size, whereas removing the highest
scoring interactions first will not fragment the network.

Results
PrInCE uses a machine learning approach to predict
conditional interactomes from co-fractionation data.
Four datasets were used to benchmark PrInCE versus
a previous pipeline [11], which showed that PRInCE
can discover twice the number of predicted PPIs
(Fig. 2a) in less than one tenth the time (Fig. 2b).
This improved runtime also includes the complex-
building module, Complexes.m, that was not present
in the previous version.

Predicting PPIs (Interactions.M)
Predicting protein-protein interactions (PPIs) is one
of the primary functions of this pipeline. Figure 3
illustrates this process using a subset of D1 that
contains ribosomal and proteasomal proteins. Each
potential interaction, i.e. protein pair, is first identified
as either a reference interaction (white), reference
non-interaction, i.e. proteins in the reference that do
not interact (black), or unknown (grey; Fig. 3a). To
score each potential interaction, the similarity of each
pair of co-fractionation profiles is then quantified
using the five distance measures (Additional file 1:
Figure S1; see Methods for definitions). Using these
as input to the machine learning classifier, an interaction
probability for each protein pair is then calculated,
expressing how well each protein pair resembles the col-
lection of reference PPIs (Fig. 3b).
By applying a threshold to interaction probabilities

outputted by the classifier, a final interaction list can be
generated at a precision specified by the user. For
example, a more stringent list containing an estimated
75% true positives (white), or a more inclusive list with
an estimated 50% true positives (cyan; Fig. 3c). In gen-
eral, there is a tradeoff between quantity and quality
when predicting PPIs, meaning that more PPIs can be
predicted at the cost of lowering the precision (Fig. 3d).
How does the number of quantified proteins affect the

number of predicted interactions? To investigate, we an-
alyzed random subsets of each dataset. Although there
was considerable variability between datasets, in general
there is an N2 relationship between the number of pro-
teins used as input to PrInCE and the number of inter-
actions returned as output (Additional file 1: Figure S2).
For all datasets, fewer than 500 quantified proteins re-
sulted in less than 1000 interaction at 50% precision. It
is important to note that while PrInCE is designed to
predict reference-like PPIs, it would be useless if it didn’t

also predict novel interactions. That is, PrInCE must
predict interactions that are not simply contained in the
reference database. Indeed, for the subset of proteins
shown in Fig. 3 it can be seen that novel interactions are
predicted (Fig. 3c, protein numbers 113 to 237). More
broadly, all three datasets we used for benchmarking

a

b

Fig. 2 Improvements to predictive power and run time. a. Number
of interactions predicted at 50% (D1, D3, D4) or 41% precision (D2).
For previously published datasets (D1, D2, D4), precision values and
interaction numbers reflect published interaction lists (“Old”).
Precision values for “New” output, i.e. from the current pipeline,
were chosen to match the Old precision values. CORUM version
2012 was used as a gold standard reference. b. Run time for all
modules on a non-performance PC using either the previously
published version (“Old (2015)”, [11]) or the current version (“New”)

Stacey et al. BMC Bioinformatics  (2017) 18:457 Page 6 of 14



had thousands of novel PPIs predicted at 50% precision
and hundreds to thousands of PPIs at 75% precision
(Fig. 2a, Table 1). In particular, at 50% precision 16,019
interactions were predicted from D1 that are not con-
tained in the reference.
PrInCE uses a supervised learning algorithm to

predict protein-protein interactions (PPIs), meaning it
requires examples of both interacting and non-

interacting proteins, i.e. a gold standard reference of
protein complexes. We sought to investigate how
characteristics of the reference impact the interactions
predicted by PrInCE. Using subsets of CORUM to
simulate the effects of a smaller reference, we see that
the number of predicted interactions can vary widely
when using relatively small references (Additional file 1:
Figure S3A, B). This is likely due to misestimation of

a b

c d

e f

Fig. 3 Predicting interactions (Interactions.m). a. Reference database. Subset of the CORUM reference database, including ribosomal and
proteasomal proteins, expressed as a square pairwise matrix. Intra-complex interactions (white) are pairs of proteins from the same
reference complex, inter-complex interactions (black) are pairs of proteins contained in the reference that are not co-complex members,
and unknown/novel pairs (grey) have one or more protein not contained in the reference. Proteins are sorted according to their peak
location. b. Interaction probability for each pair of proteins using the labels in (a) and distance measures. c. Square pairwise matrix of
predicted interactions at two precision levels, 50% (0.50) and 75% (0.75). Interactions are predicted by applying a constant threshold to
interaction score. d. Precision versus accumulated number of interactions. e. Overlap between three gold standard references (CORUM,
IntAct, and hu.MAP). f. Predicted interactions using gold standard references from (e). 5527 interactions were commonly predicted from
all three gold standards (intersection)
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the precision of predicted interactions owing to increased
effects of noise for smaller references, with spuriously high
precision values leading to erroneously large numbers of
predicted interactions. However, the predicted interactions
that differ between these predicted interactomes tend to
be lower scoring, with the highest scoring interactions
predicted regardless of the reference (Additional file 1:
Figure S3c). Further, entirely non-overlapping CORUM
reference sets (Additional file 1: Figure S3D) lead to pre-
dicted interactions with >94% overlap, on average (average
Jaccard index = 0.943 +/− 0.2 st.d. between interaction
lists predicted from entirely non-overlapping halves of
CORUM; Additional file 1: Figure S3E). Therefore, for a
given MS/MS dataset, PrInCE tends to predict the same,
higher scoring interactions regardless of the reference,
although small references can lead to errors in the number
of predicted interactions. For large enough references,
PrInCE predicts a stable set of interactions, even when
gold standard references are incomplete.
Second, we compared the performance of PrInCE trained

on CORUM to PrInCE trained on two other gold standards:
IntAct, a manually curated database of 1855 protein
complexes [19], and hu.MAP, a database synthesized from
three high throughput datasets totaling over 9000 mass spec-
trometry experiments [20]. Although these three gold stan-
dards are largely independent, with few common PPIs
(average pairwise Jaccard index = 0.03; Fig. 3e), they lead to
predicted interactions with a greater degree of overlap (aver-
age pairwise Jaccard index = 0.30; Fig. 3f; Additional file 1:
Table S1). Across all four datasets, there is a pattern for
CORUM and IntAct to predict more interactions than
hu.MAP (Additional file 1: Figure S4A-C), possibly because
CORUM and IntAct are hand-curated. Indeed, gold standard
chromatogram pairs given by CORUM and IntAct are more
correlated than chromatogram pairs given by hu.MAP,
suggesting that hu.MAP contains more false positives
(Additional file 1: Figure S4D). However, the larger number
of interactions predicted by IntAct may also be an artifact
produced by IntAct’s relatively small size (130 human com-
plexes) (Additional file 1: Figure S3A). Over all datasets, we
find that interactions predicted from multiple gold standards
are higher scoring (average interaction score = 0.72) than in-
teractions only predicted using a single gold standard (aver-
age score = 0.62). Similarly to our analysis of CORUM
subsets, this suggests a stable set of higher-scoring interac-
tions are predicted regardless of the choice of reference (e.g.
Fig. 3f).

Predicting protein complexes (Complexes.M)
Building on predicted PPIs, the second major output of
PrInCE is protein complexes. Because buffer conditions
in PCP-SILAC are relatively gentle on protein com-
plexes, this module potentially identifies complexes that
are unlikely to be identified by immunoprecipitation

techniques. To do so, PPIs predicted by Interactions.m
are weighted by their interaction score and input into
the ClusterONE algorithm [16] to cluster individual PPIs
into complexes.
Sorting co-fractionation profiles by their peak location

(Fig. 4a) reveals the tendency for groups of proteins to
co-elute (Fig. 4b). After analysis with PrInCE, some
groups are predicted to be co-complex members.
Figure 4c shows an example protein complex predicted
by Complexes.m. The predicted complex (orange and
purple) largely overlaps with the 20S proteasome con-
tained in the CORUM reference database (black and
purple). One member (P28065, orange) was predicted to
be participating in the complex. Notably, while P28065
is not in the CORUM database, it is annotated as a
proteasomal protein. Thus, using co-elution as the only
source of evidence, PrInCE predicted this known co-
complex member of the 20S proteasome even though it
was missing from the reference.
PrInCE is also capable of predicting entirely novel pro-

tein complexes. For example, a four member complex
was predicted in dataset D1, of which no proteins were
in CORUM (Fig. 4d). Reassuringly, these four proteins
(P61923, P53621, P48444, O14579) are all subunits of
the coatomer protein complex, a known complex that,
while not present in the CORUM database, has substan-
tial low throughput [28–30] and high throughput
evidence [6, 8, 15] supporting its existence. For all com-
plexes predicted by the pipeline (e.g. Fig. 4e; D1, 71
complexes, median size 14), each complex predicted by
ClusterONE is matched to a reference complex when
possible. Of the 71 protein complexes predicted for D1,
20 were entirely novel, i.e. had no matching reference
complex. In general, PrInCE predicts both entirely novel
protein complexes and those that recover existing
complexes while predicting novel members. The four
datasets analyzed in this study produced a total of 291
protein complexes, of which 169 were at least partially
matched to a CORUM complex. On average, 31% of
complex subunits were recovered from known com-
plexes while the remaining were novel subunits (Fig. 4f ).

Validation of predicted interactions and complexes
No method for determining protein interactions is
perfect, and higher-throughput methods tend to recover
noise along with biologically meaningful signal. We
estimate how much noise is in the final interaction list
by comparing it to a reference of known interactions,
e.g. CORUM, and quantifying the signal to noise ratio in
terms of precision, i.e. TP/(TP + FP). In order to validate
that we are separating signal from noise in a biologically
meaningful way, we sought to establish the biological
significance of interaction lists generated by PRInCE
using independent evidence. First, we wanted to confirm
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(See figure on previous page.)
Fig. 4 Predicting complexes (Complexes.m). a. 2311 co-fractionation profiles from a single replicate of D1, sorted by peak location. Fourteen 20S
proteasomal proteins group together (protein numbers 851–864). b. Square connection matrix for same proteins as (a). Colour shows interaction
score for all 19,740 interactions with score greater than 0.50. Inset: Close up of the 14 × 14 connection matrix for 20S proteasomal members plus
other proteins (protein numbers 851–865). c. Co-fractionation profiles for the 14 proteins from B inset, which also correspond to a predicted
complex. Profiles of complex members (left) all have a similar shape. When compared to its closest match in CORUM, the 20S proteasome, this
predicted complex had 13 overlapping proteins (purple), as well as one protein in the predicted complex that was not in the 20S proteasome
(orange). Additionally, there was a single protein from the 20S proteasome that was not in the predicted complex (black). d. Example predicted
complex with no match in the CORUM database. e. Force diagrams for all 71 predicted complexes from 19,740 interactions in D1. Same colouring
scheme as (d and e). Proteins in known complexes that were not predicted (i.e. Reference-only, black) are omitted for clarity. f. Predicted
complexes are composed of known (“recovered”) subunits and novel subunits. Data is from all four datasets. The size of each predicted complex
is the sum of novel and recovered members

Fig. 5 Predicted interactions are enriched for biologically significant attributes, and the degree of enrichment reflects interaction score. a. Fraction
of interacting proteins with at least one shared GO-slim term as a function of interaction score and ontological domain. Triangle: biological
process. Square: cellular component. Circle: molecular function. b. Tissue proteome abundance [23] correlation (Pearson correlation coefficient) as
a function of interaction score. c. Interacting proteins in the apoptosis dataset are enriched for shared GO-slim terms relative to non-interacting protein
pairs at diverse GO term breadths. d. Distribution of tissue proteome abundance correlations (Pearson correlation coefficients) for interacting and
non-interacting protein pairs in D1
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that the measure we use to rank the confidence of pre-
dicted interactions, interaction score, is a useful way to
identify which interactions are more likely to be true
positives. To do so, we tested whether proteins in high
score PPIs are more likely to share annotation terms
than low score interactions. Indeed, for every GO-slim
annotation category, as interaction score increased, so
did the proportion of interactions sharing at least one
annotation term (Fig. 5a, Additional file 1: Table S2).
Similarly, interacting protein pairs were more likely to
be coexpressed across human tissues (Pearson correl-
ation coefficient ≥ 0.75) (Fig. 5b), share at least one sub-
cellular localization term (Additional file 1: Figure S5A),
and have a structurally resolved domain-domain inter-
action (Additional file 1: Figure S5B). Therefore, the
ranking system used by this pipeline is biologically
meaningful, as demonstrated by independent sources of
evidence.
How do predicted interactions differ from predicted

non-interactions? A well-performing pipeline returns
predicted classes that are, at least by some measures,
cleanly separated. To assess this, we first compared
Jaccard indices [26], which measure the degree to which
protein pairs share annotation terms, between non-
interacting protein pairs (cyan), medium-confidence
predictions (orange), and high-confidence (purple;
Additional file 1: Figures. S5C, S6A-C). Compared to
non-interacting proteins, high-confidence interactions
show a bias towards larger Jaccard indices, as do medium-
confidence interactions, although to a lesser degree.
We next used enrichment values to quantify the tendency

for predicted interacting proteins to share annotation
terms. In general, interacting proteins were about 10× more
likely to share GO annotation terms than non-interacting
proteins (Fig. 5c, Additional file 1: Figure S6D-F). Moreover,
enrichment was relatively independent of the breadth of
the annotation terms, where breadth describes the number
of annotated proteins per annotation term [31]. We found

that interacting proteins were significantly enriched for
nearly all validation measures used here (Table 2). Finally,
comparing how well tissue-dependent protein abundance
correlates between protein pairs [23] shows that protein
abundance is more correlated between predicted interact-
ing protein pairs versus predicted non-interactions (Fig. 5d,
Additional file 1: Figure S6G-J). Therefore, predicted
interactions returned by PrInCE are more enriched than
predicted non-interactions for external evidence of interact-
ing. Importantly, this external evidence is independent of
the evidence used within the pipeline. The same analysis
was repeated to compare interactions predicted by PrInCE
to previously published interaction lists [8, 11]. To do so,
we matched the number of interactions in the published
lists by taking that number of top-ranked interactions pre-
dicted by PrInCE. In 15 out 18 comparisons of enrichment
values, interactions predicted by PrInCE were measured to
be more enriched for external evidence of interaction than
previously published lists (Additional file 1: Table S3).
Calculating the precision of the interactions pre-

dicted by PrInCE is crucial for minimizing the num-
ber of false positives. To estimate precision, both the
numbers of true and false positives must be calcu-
lated. The reference database provides a list of true
positive interactions (intra- complex). However, since
no comparable database of false positive interactions
exists, we make the assumption that pairs of interact-
ing proteins which are both present in the reference,
but not reported by the reference to interact, are false
positives (inter-complex). Several of these false posi-
tives are likely to be true interactions that simply
have not been previously discovered and thus not in-
cluded in the reference, meaning that PrInCE likely
underestimates the true precision of the interactions.
Using the method outlined in [27] to re-estimate pre-
cision, we found that, indeed, the stated precision is a
conservative estimate of the confidence of the pre-
dicted interaction list (Fig. 6).

Table 2 Interacting versus non-interacting terms for shared annotation terms (GO, Subcellular Localization), tissue-dependent prote-
ome abundance, and shared structurally resolved binding domains

Dataset GO GO GO Proteome Subcellular Structurally

CC BP MF Abundance Localization Resolved

D1 1.2 19.6 13.6 8.7 2.7 13

0.13 <1e-300 <1e-300 <1e-300 6e-21 2e-275

D2 1.94 12.2 10.2 7.7 3.2 14

2e-8 <1e-300 2e-266 4e-264 2e-8 4e-267

D3 2.15 16.8 13.7 12 2.5 15

1e-4 <1e-300 1e-288 6e-281 3e-4 1e-135

D4 3.13 16.1 13.5 10 2.4 11

1e-51 <1e-300 <1e-300 <1e-300 2e-6 <1e-300

Fold values (top numbers) and hypergeometric test p-values (bottom numbers). Annotation terms were first filtered using a 10% breadth cutoff
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Finally, we explored the topological properties of the
predicted network, i.e. how the network is connected.
Specifically, as is postulated for other PPI networks
returned by high-throughput techniques [26], we vali-
dated the hypothesis that predicted networks should
consist of small subsets of highly connected proteins,
which are more loosely linked to each other by relatively
weak connections. This connectivity structure denotes
well-defined subgraphs connected by weaker signaling
and/or spurious false positive interactions. To analyze
the topology, we used an approach described by [26],
wherein interactions are removed sequentially from the
network: removing the lowest confidence interactions
first should fragment the network by revealing islands of
isolated subgraphs; removing the highest confidence
interactions should lead to no fragmentation. Indeed,
removing low confidence interactions first produced a
network with a greater number (Additional file 1: Figure
S7A, purple) of relatively smaller subgraphs (Add-
itional file 1: Figure S7B), i.e. fragmentation. Removing in-
teractions in this order rapidly fragmented the largest
subgraph (Additional file 1: Figure S7C). Removing high-
confidence interactions first did not have this effect (Add-
itional file 1: Figure S7, orange). Similar results were ob-
tained for other datasets (Additional file 1: Figure S7E-P).

Discussion
A machine learning classifier provides improvements over
simply sorting protein-protein pairs by how similarly they
co-elute, as it provides an automated method for

combining multiple measures of co-elution. We chose the
Naive Bayes classifier because it is computationally inex-
pensive and surprisingly powerful given its relative simpli-
city. Indeed, when comparing the Naive Bayes (“fitcnb”,
Matlab) to a Support Vector Machine classifier (“fitcsvm”,
Matlab) we found the Naive Bayes predicted similar or
greater numbers of interactions at a given precision level,
depending on the dataset (data not shown).
One limitation of our technique is that it requires a

suitable gold standard reference of known protein com-
plexes. For mammalian datasets we recommend using
the CORUM database, as it is large enough, entirely
hand-curated, and accurately describes co-elution data.
For yeast or E. coli datasets we recommend the IntAct
database. Because false positives are defined as inter-
complex pairs that are not also intra-complex pairs, gold
standard databases of binary protein pairs, such as
STRING, are not suitable. If neither CORUM nor IntAct
are suitable, in general we recommend that the reference
be large enough (>10,000 gold standard protein pairs in
the MS/MS dataset, Additional file 1: Figure S3B) and
accurately describe the dataset, measured, for example, by
high correlation (Pearson R > 0.4) between gold standard
co-elution curves (Additional file 1: Figure S4D). Since
protein complexes are variable, not all known interactions
will occur at any one time or under one set of biological
conditions. Therefore, the suitability of a reference
database, determined by the fraction of gold standard in-
teractions that were indeed physically interacting in the
sample, is crucial. Failure of the gold standard reference to
accurately describe the data will result in poor classifica-
tion performance and, ultimately, a short or empty list of
predicted interactions (e.g. hu.MAP, Additional file 1:
Figure S4A-C).
Early versions of this pipeline were designed for the

analysis of (PCP-) SILAC datasets. A major strength of
SILAC experiments is that they allow conditional experi-
ments to be performed simultaneously, minimizing
experimental variability between conditions. However,
the analysis here of dataset D3, a surrogate for a non-
SILAC labelled dataset, demonstrates that PrInCE is not
limited to analyzing SILAC data. In fact, PrInCE can
analyze any dataset with co-fractionation profiles for
single proteins where co-fractionation is meaningful
evidence of co-complex membership, and for which
there exists a suitable reference.

Conclusions
PrInCE provides a powerful tool for predicting interactomes
from co-fractionation experiments. It greatly simplifies the
task of analyzing co-fractionation datasets, requiring at most
installation and simple command line tools. Building on pre-
liminary versions of a bioinformatics treatment [8, 11],
PrInCE predicts nearly twice as many protein interactions at

Fig. 6 PrInCE precision of the predicted interaction list is a
conservative estimate of the number of false positives. Predicted
interaction lists were generated for dataset D1 at multiple
user-defined precision levels (PrInCE precision), and their
precision was re-estimated (Mrowka precision [27]). PrInCE lists
were generated using a random 2/3 subset of the CORUM
reference and precision was re-estimated using the remaining
1/3. Median values from 100 iterations are shown, and bars show
the interquartile range
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the same stringency with a 97% decrease in run time (Fig. 2).
PrInCE also offers increased functionality over previous ver-
sions, providing a module for automated, optimized predic-
tion of protein complexes using the ClusterONE algorithm
[16]. Importantly, PrInCE is available as a standalone execut-
able program, meaning access to Matlab is not required.
Finally, at the same number of interactions, interactions pre-
dicted by PrInCE are more supported by external, validating
evidence than previous versions, as quantified by a greater
enrichment of shared annotation terms (Additional file 1:
Table S3).

Additional file

Additional file 1: Supplementary Figures and Tables. (DOCX 4945 kb)
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